Step of Proof: quot_elim |
12,41 |
|
Inference at * 1
Iof proof for Lemma quot elim:
1. T : Type
2. E : T
T

3. EquivRel(T;x,y.E(x,y))
4. a : T
5. b : T
6. a = b
E(a,b)
by ((EqTypeHD 6)
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n
C)) (first_tok :t) inil_term)))
C1:
C1: 6. E(a,b)
C1:
E(a,b)
C.